

https://www.ez-learn.global/

1. What is C++?

C++ is an object-oriented programming language created by Bjarne Stroustrup. It was

released in 1985.

C++ is a superset of C with the major addition of classes in C language.

Initially, Stroustrup called the new language "C with classes". However, after sometime the

name was changed to C++. The idea of C++ comes from the C increment operator ++.

2. What are the advantages of C++?

C++ doesn't only maintains all aspects from C language, it also simplifies memory

management and adds several features like:

C++ is a highly portable language means that the software developed using C++ language

can run on any platform.

C++ is an object-oriented programming language which includes the concepts such as

classes, objects, inheritance, polymorphism, abstraction.

https://www.ez-learn.global/

https://www.ez-learn.global/

C++ has the concept of inheritance. Through inheritance, one can eliminate the redundant

code and can reuse the existing classes.

Data hiding helps the programmer to build secure programs so that the program cannot be

attacked by the invaders.

Message passing is a technique used for communication between the objects.

C++ contains a rich function library.

3. What is a class?

The class is a user-defined data type. The class is declared with the keyword class. The class

contains the data members, and member functions whose access is defined by the three

modifiers are private, public and protected. The class defines the type definition of the

category of things. It defines a datatype, but it does not define the data it just specifies the

structure of data.

You can create N number of objects from a class.

4. What are the various OOPs concepts in C++?

https://www.ez-learn.global/

https://www.ez-learn.global/

The various OOPS concepts in C++ are:

C++ Interview Questions

Class:

The class is a user-defined data type which defines its properties and its functions. For

example, Human being is a class. The body parts of a human being are its properties, and the

actions performed by the body parts are known as functions. The class does not occupy any

memory space. Therefore, we can say that the class is the only logical representation of the

data.

The syntax of declaring the class:

class student

{

//data members;

//Member functions

}

Object:

An object is a run-time entity. An object is the instance of the class. An object can represent a

person, place or any other item. An object can operate on both data members and member

functions. The class does not occupy any memory space. When an object is created using a

new keyword, then space is allocated for the variable in a heap, and the starting address is

stored in the stack memory. When an object is created without a new keyword, then space is

not allocated in the heap memory, and the object contains the null value in the stack.

class Student

{

//data members;

//Member functions

https://www.ez-learn.global/

https://www.ez-learn.global/

}

The syntax for declaring the object:

Student s = new Student();

Inheritance:

Inheritance provides reusability. Reusability means that one can use the functionalities of the

existing class. It eliminates the redundancy of code. Inheritance is a technique of deriving a

new class from the old class. The old class is known as the base class, and the new class is

known as derived class.

Syntax

class derived_class :: visibility-mode base_class;

Note: The visibility-mode can be public, private, protected.

Encapsulation:

Encapsulation is a technique of wrapping the data members and member functions in a single

unit. It binds the data within a class, and no outside method can access the data. If the data

member is private, then the member function can only access the data.

Abstraction:

Abstraction is a technique of showing only essential details without representing the

implementation details. If the members are defined with a public keyword, then the members

are accessible outside also. If the members are defined with a private keyword, then the

members are not accessible by the outside methods.

Data binding:

Data binding is a process of binding the application UI and business logic. Any change made in

the business logic will reflect directly to the application UI.

Polymorphism:

Polymorphism means multiple forms. Polymorphism means having more than one function

with the same name but with different functionalities. Polymorphism is of two types:

Static polymorphism is also known as early binding.

Dynamic polymorphism is also known as late binding.

5. What are the different types of polymorphism in C++?

https://www.ez-learn.global/

https://www.ez-learn.global/

Polymorphism: Polymorphism means multiple forms. It means having more than one function

with the same function name but with different functionalities.

Polymorphism is of two types:

C++ Interview Questions

Runtime polymorphism

Runtime polymorphism is also known as dynamic polymorphism. Function overriding is an

example of runtime polymorphism. Function overriding means when the child class contains

the method which is already present in the parent class. Hence, the child class overrides the

method of the parent class. In case of function overriding, parent and child class both

contains the same function with the different definition. The call to the function is determined

at runtime is known as runtime polymorphism.

Let's understand this through an example:

#include <iostream>

using namespace std;

class Base

{

 public:

 virtual void show()

 {

 cout<<"javaTpoint";

 }

};

class Derived:public Base

{

 public:

 void show()

 {

 cout<<"javaTpoint tutorial";

https://www.ez-learn.global/

https://www.ez-learn.global/

 }

};

int main()

{

 Base* b;

 Derived d;

 b=&d;

 b->show();

 return 0;

}

Output:

javaTpoint tutorial

Compile time polymorphism

Compile-time polymorphism is also known as static polymorphism. The polymorphism which is

implemented at the compile time is known as compile-time polymorphism. Method overloading

is an example of compile-time polymorphism.

Method overloading: Method overloading is a technique which allows you to have more than

one function with the same function name but with different functionality.

Method overloading can be possible on the following basis:

The return type of the overloaded function.

The type of the parameters passed to the function.

The number of parameters passed to the function.

Let's understand this through an example:

#include <iostream>

using namespace std;

class Multiply

{

 public:

 int mul(int a,int b)

 {

 return(a*b);

 }

 int mul(int a,int b,int c)

 {

https://www.ez-learn.global/

https://www.ez-learn.global/

 return(a*b*c);

 }

 };

int main()

{

 Multiply multi;

 int res1,res2;

 res1=multi.mul(2,3);

 res2=multi.mul(2,3,4);

 cout<<"\n";

 cout<<res1;

 cout<<"\n";

 cout<<res2;

 return 0;

}

Output:

6

24

In the above example, mul() is an overloaded function with the different number of

parameters.

6. Define namespace in C++.

The namespace is a logical division of the code which is designed to stop the naming conflict.

The namespace defines the scope where the identifiers such as variables, class, functions are

declared.

The main purpose of using namespace in C++ is to remove the ambiguity. Ambiquity occurs

when the different task occurs with the same name.

For example: if there are two functions exist with the same name such as add(). In order to

prevent this ambiguity, the namespace is used. Functions are declared in different

namespaces.

C++ consists of a standard namespace, i.e., std which contains inbuilt classes and functions.

https://www.ez-learn.global/

https://www.ez-learn.global/

So, by using the statement "using namespace std;" includes the namespace "std" in our

program.

Syntax of namespace:

namespace namespace_name

{

 //body of namespace;

}

Syntax of accessing the namespace variable:

namespace_name::member_name;

Let's understand this through an example:

#include <iostream>

using namespace std;

namespace addition

{

 int a=5;

 int b=5;

 int add()

 {

 return(a+b);

 }

}

int main() {

int result;

result=addition::add();

cout<<result;

return 0;

}

Output:

10

7. Define token in C++.

https://www.ez-learn.global/

https://www.ez-learn.global/

A token in C++ can be a keyword, identifier, literal, constant and symbol.

8. Who was the creator of C++?

Bjarne Stroustrup.

9. Which operations are permitted on pointers?

Following are the operations that can be performed on pointers:

Incrementing or decrementing a pointer: Incrementing a pointer means that we can

increment the pointer by the size of a data type to which it points.

There are two types of increment pointers:

1. Pre-increment pointer: The pre-increment operator increments the operand by 1, and the

value of the expression becomes the resulting value of the incremented. Suppose ptr is a

pointer then pre-increment pointer is represented as ++ptr.

Let's understand this through an example:

#include <iostream>

using namespace std;

int main()

https://www.ez-learn.global/

https://www.ez-learn.global/

{

int a[5]={1,2,3,4,5};

int *ptr;

ptr=&a[0];

cout<<"Value of *ptr is : "<<*ptr<<"\n";

cout<<"Value of *++ptr : "<<*++ptr;

return 0;

}

Output:

Value of *ptr is : 1

Value of *++ptr : 2

2. Post-increment pointer: The post-increment operator increments the operand by 1, but the

value of the expression will be the value of the operand prior to the incremented value of the

operand. Suppose ptr is a pointer then post-increment pointer is represented as ptr++.

Let's understand this through an example:

#include <iostream>

using namespace std;

int main()

{

int a[5]={1,2,3,4,5};

int *ptr;

ptr=&a[0];

cout<<"Value of *ptr is : "<<*ptr<<"\n";

cout<<"Value of *ptr++ : "<<*ptr++;

return 0;

}

Output:

Value of *ptr is : 1

Value of *ptr++ : 1

Subtracting a pointer from another pointer: When two pointers pointing to the members of an

array are subtracted, then the number of elements present between the two members are

returned.

10. Define 'std'.

https://www.ez-learn.global/

https://www.ez-learn.global/

Std is the default namespace standard used in C++.

11. Which programming language's unsatisfactory performance led to the discovery of C++?

C++was discovered in order to cope with the disadvantages of C.

12. How delete [] is different from delete?

Delete is used to release a unit of memory, delete[] is used to release an array.

13. What is the full form of STL in C++?

STL stands for Standard Template Library.

https://www.ez-learn.global/

https://www.ez-learn.global/

14. What is an object?

The Object is the instance of a class. A class provides a blueprint for objects. So you can

create an object from a class. The objects of a class are declared with the same sort of

declaration that we declare variables of basic types.

15. What are the C++ access specifiers?

The access specifiers are used to define how to functions and variables can be accessed

outside the class.

There are three types of access specifiers:

Private: Functions and variables declared as private can be accessed only within the same

class, and they cannot be accessed outside the class they are declared.

Public: Functions and variables declared under public can be accessed from anywhere.

Protected: Functions and variables declared as protected cannot be accessed outside the

class except a child class. This specifier is generally used in inheritance.

16. What is Object Oriented Programming (OOP)?

OOP is a methodology or paradigm that provides many concepts. The basic concepts of Object

Oriented Programming are given below:

Classes and Objects: Classes are used to specify the structure of the data. They define the

https://www.ez-learn.global/

https://www.ez-learn.global/

data type. You can create any number of objects from a class. Objects are the instances of

classes.

Encapsulation: Encapsulation is a mechanism which binds the data and associated operations

together and thus hides the data from the outside world. Encapsulation is also known as data

hiding. In C++, It is achieved using the access specifiers, i.e., public, private and protected.

Abstraction: Abstraction is used to hide the internal implementations and show only the

necessary details to the outer world. Data abstraction is implemented using interfaces and

abstract classes in C++.

Some people confused about Encapsulation and abstraction, but they both are different.

Inheritance: Inheritance is used to inherit the property of one class into another class. It

facilitates you to define one class in term of another class.

17. What is the difference between an array and a list?

An Array is a collection of homogeneous elements while a list is a collection of heterogeneous

elements.

Array memory allocation is static and continuous while List memory allocation is dynamic and

random.

In Array, users don't need to keep in track of next memory allocation while In the list, the user

has to keep in track of next location where memory is allocated.

18. What is the difference between new() and malloc()?

new() is a preprocessor while malloc() is a function.

There is no need to allocate the memory while using "new" but in malloc() you have to use

https://www.ez-learn.global/

https://www.ez-learn.global/

sizeof().

"new" initializes the new memory to 0 while malloc() gives random value in the newly allotted

memory location.

The new() operator allocates the memory and calls the constructor for the object initialization

and malloc() function allocates the memory but does not call the constructor for the object

initialization.

The new() operator is faster than the malloc() function as operator is faster than the function.

19. What are the methods of exporting a function from a DLL?

There are two ways:

By using the DLL's type library.

Taking a reference to the function from the DLL instance.

20. Define friend function.

Friend function acts as a friend of the class. It can access the private and protected

members of the class. The friend function is not a member of the class, but it must be listed

in the class definition. The non-member function cannot access the private data of the class.

Sometimes, it is necessary for the non-member function to access the data. The friend

function is a non-member function and has the ability to access the private data of the class.

https://www.ez-learn.global/

https://www.ez-learn.global/

To make an outside function friendly to the class, we need to declare the function as a friend

of the class as shown below:

class sample

{

 // data members;

 public:

friend void abc(void);

};

Following are the characteristics of a friend function:

The friend function is not in the scope of the class in which it has been declared.

Since it is not in the scope of the class, so it cannot be called by using the object of the class.

Therefore, friend function can be invoked like a normal function.

A friend function cannot access the private members directly, it has to use an object name

and dot operator with each member name.

Friend function uses objects as arguments.

Let's understand this through an example:

#include <iostream>

using namespace std;

class Addition

{

 int a=5;

 int b=6;

 public:

 friend int add(Addition a1)

 {

 return(a1.a+a1.b);

 }

};

int main()

{

int result;

Addition a1;

 result=add(a1);

 cout<<result;

return 0;

}

Output: 11

https://www.ez-learn.global/

https://www.ez-learn.global/

21. What is a virtual function?

A virtual function is used to replace the implementation provided by the base class. The

replacement is always called whenever the object in question is actually of the derived class,

even if the object is accessed by a base pointer rather than a derived pointer.

A virtual function is a member function which is present in the base class and redefined by

the derived class.

When we use the same function name in both base and derived class, the function in base

class is declared with a keyword virtual.

When the function is made virtual, then C++ determines at run-time which function is to be

called based on the type of the object pointed by the base class pointer. Thus, by making the

base class pointer to point different objects, we can execute different versions of the virtual

functions.

Rules of a virtual function:

The virtual functions should be a member of some class.

The virtual function cannot be a static member.

Virtual functions are called by using the object pointer.

It can be a friend of another class.

C++ does not contain virtual constructors but can have a virtual destructor.

22. When should we use multiple inheritance?

https://www.ez-learn.global/

https://www.ez-learn.global/

You can answer this question in three manners:

Never

Rarely

If you find that the problem domain cannot be accurately modeled any other way.

23. What is a destructor?

A Destructor is used to delete any extra resources allocated by the object. A destructor

function is called automatically once the object goes out of the scope.

Rules of destructor:

Destructors have the same name as class name and it is preceded by tilde.

It does not contain any argument and no return type.

24. What is an overflow error?

It is a type of arithmetical error. It happens when the result of an arithmetical operation been

greater than the actual space provided by the system.

25. What is overloading?

https://www.ez-learn.global/

https://www.ez-learn.global/

When a single object behaves in many ways is known as overloading. A single object has the

same name, but it provides different versions of the same function.

C++ facilitates you to specify more than one definition for a function name or an operator in

the same scope. It is called function overloading and operator overloading respectively.

Overloading is of two types:

C++ Interview Questions

1. Operator overloading: Operator overloading is a compile-time polymorphism in which a

standard operator is overloaded to provide a user-defined definition to it. For example, '+'

operator is overloaded to perform the addition operation on data types such as int, float, etc.

Operator overloading can be implemented in the following functions:

Member function

Non-member function

Friend function

Syntax of Operator overloading:

Return_type classname :: Operator Operator_symbol(argument_list)

{

 // body_statements;

}

2. Function overloading: Function overloading is also a type of compile-time polymorphism

which can define a family of functions with the same name. The function would perform

different operations based on the argument list in the function call. The function to be

invoked depends on the number of arguments and the type of the arguments in the argument

list.

26. What is function overriding?

https://www.ez-learn.global/

https://www.ez-learn.global/

If you inherit a class into a derived class and provide a definition for one of the base class's

function again inside the derived class, then this function is called overridden function, and

this mechanism is known as function overriding.

27. What is virtual inheritance?

Virtual inheritance facilitates you to create only one copy of each object even if the object

appears more than one in the hierarchy.

28. What is a constructor?

A Constructor is a special method that initializes an object. Its name must be same as class

name.

29. What is the purpose of the "delete" operator?

https://www.ez-learn.global/

https://www.ez-learn.global/

The "delete" operator is used to release the dynamic memory created by "new" operator.

30. Explain this pointer?

This pointer holds the address of the current object.

31. What does Scope Resolution operator do?

A scope resolution operator(::) is used to define the member function outside the class.

32. What is the difference between delete and delete[]?

Delete [] is used to release the array of allocated memory which was allocated using new[]

whereas delete is used to release one chunk of memory which was allocated using new.

https://www.ez-learn.global/

https://www.ez-learn.global/

33. What is a pure virtual function?

The pure virtual function is a virtual function which does not contain any definition. The

normal function is preceded with a keyword virtual. The pure virtual function ends with 0.

Syntax of a pure virtual function:

virtual void abc()=0; //pure virtual function.

Let's understand this through an example:

#include<iostream>

using namespace std;

class Base

{

 public:

 virtual void show()=0;

};

class Derived:public Base

{

 public:

 void show()

 {

 cout<<"javaTpoint";

 }

};

int main()

{

 Base* b;

 Derived d;

 b=&d;

https://www.ez-learn.global/

https://www.ez-learn.global/

 b->show();

 return 0;

}

Output:

javaTpoint

34. What is a class template?

A class template is used to create a family of classes and functions. For example, we can

create a template of an array class which will enable us to create an array of various types

such as int, float, char, etc. Similarly, we can create a template for a function, suppose we

have a function add(), then we can create multiple versions of add().

The syntax of a class template:

template<class T>

class classname

{

 // body of class;

};

Syntax of a object of a template class:

classname<type> objectname(arglist);

35. What is the difference between function overloading and operator overloading?

https://www.ez-learn.global/

https://www.ez-learn.global/

Function overloading: Function overloading is defined as we can have more than one version of

the same function. The versions of a function will have different signature means that they

have a different set of parameters.

Operator overloading: Operator overloading is defined as the standard operator can be

redefined so that it has a different meaning when applied to the instances of a class.

36. What is a virtual destructor?

A virtual destructor in C++ is used in the base class so that the derived class object can also

be destroyed. A virtual destructor is declared by using the ~ tilde operator and then virtual

keyword before the constructor.

Note: Constructor cannot be virtual, but destructor can be virtual.

Let's understand this through an example

Example without using virtual destructor

#include <iostream>

using namespace std;

class Base

{

 public:

 Base()

https://www.ez-learn.global/

https://www.ez-learn.global/

 {

 cout<<"Base constructor is called"<<"\n";

 }

 ~Base()

 {

 cout<<"Base class object is destroyed"<<"\n";

 }

};

class Derived:public Base

{

 public:

 Derived()

 {

 cout<<"Derived class constructor is called"<<"\n";

 }

 ~Derived()

 {

 cout<<"Derived class object is destroyed"<<"\n";

 }

};

int main()

{

 Base* b= new Derived;

 delete b;

 return 0;

}

Output:

Base constructor is called

Derived class constructor is called

Base class object is destroyed

In the above example, delete b will only call the base class destructor due to which derived

class destructor remains undestroyed. This leads to the memory leak.

Example with a virtual destructor

#include <iostream>

using namespace std;

class Base

{

 public:

https://www.ez-learn.global/

https://www.ez-learn.global/

 Base()

 {

 cout<<"Base constructor is called"<<"\n";

 }

 virtual ~Base()

 {

 cout<<"Base class object is destroyed"<<"\n";

 }

};

class Derived:public Base

{

 public:

 Derived()

 {

 cout<<"Derived class constructor is called"<<"\n";

 }

 ~Derived()

 {

 cout<<"Derived class object is destroyed"<<"\n";

 }

};

int main()

{

 Base* b= new Derived;

 delete b;

 return 0;

}

Output:

Base constructor is called

Derived class constructor is called

Derived class object is destroyed

Base class object is destroyed

When we use the virtual destructor, then the derived class destructor is called first, and then

the base class destructor is called.

37. Object-Oriented Programming (OOPs)

https://www.ez-learn.global/

https://www.ez-learn.global/

C++ supports the object-oriented programming, the four major pillar of object-oriented

programming (OOPs) used in C++ are:

Inheritance

Polymorphism

Encapsulation

Abstraction

38. C++ Standard Libraries

Standard C++ programming is divided into three important parts:

The core library includes the data types, variables and literals, etc.

The standard library includes the set of functions manipulating strings, files, etc.

The Standard Template Library (STL) includes the set of methods manipulating a data

structure.

https://www.ez-learn.global/

